Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 719
Filtrar
1.
Immunology ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561001

RESUMO

Radiation-induced fibrosis (RIF) is a severe chronic complication of radiotherapy (RT) manifested by excessive extracellular matrix (ECM) components deposition within the irradiated area. The lung, heart, skin, jaw, pelvic organs and so on may be affected by RIF, which hampers body functions and quality of life. There is accumulating evidence suggesting that the immune microenvironment may play a key regulatory role in RIF. This article discussed the synergetic or antagonistic effects of immune cells and mediators in regulating RIF's development. Several potential preventative and therapeutic strategies for RIF were proposed based on the immunological mechanisms to provide clinicians with improved cognition and clinical treatment guidance.

2.
Zookeys ; 1196: 271-283, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38586078

RESUMO

A new species of pomatiopsid freshwater snail, Fenouiliaundata Chen & He, sp. nov., is described from Guangxi, China, based on morphological and molecular evidence. The new species can be distinguished from its congeners by the following combination of characters: shell with low, prosocline, rounded axial ribs and fine spiral striae, broader than high; aperture broader than shell height; radula with lateral teeth have only two or three faint, wavy ridges on inner side. A molecular analysis of partial mitochondrial COI and 16S DNA sequences supports the systematic position of the new taxon.

3.
Appl Microbiol Biotechnol ; 108(1): 289, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38587649

RESUMO

Rumen microbial urease inhibitors have been proposed for regulating nitrogen emission and improving nitrogen utilization efficiency in ruminant livestock industry. However, studies on plant-derived natural inhibitors of rumen microbial urease are limited. Urease accessory protein UreG, plays a crucial role in facilitating urease maturation, is a new target for design of urease inhibitor. The objective of this study was to select the potential effective inhibitor of rumen microbial urease from major protoberberine alkaloids in Rhizoma Coptidis by targeting UreG. Our results showed that berberine chloride and epiberberine exerted superior inhibition potential than other alkaloids based on GTPase activity study of UreG. Berberine chloride inhibition of UreG was mixed type, while inhibition kinetics type of epiberberine was uncompetitive. Furthermore, epiberberine was found to be more effective than berberine chloride in inhibiting the combination of nickel towards UreG and inducing changes in the second structure of UreG. Molecular modeling provided the rational structural basis for the higher inhibition potential of epiberberine, amino acid residues in G1 motif and G3 motif of UreG formed interactions with D ring of berberine chloride, while interacted with A ring and D ring of epiberberine. We further demonstrated the efficacy of epiberberine in the ruminal microbial fermentation with low ammonia release and urea degradation. In conclusion, our study clearly indicates that epiberberine is a promising candidate as a safe and effective inhibitor of rumen microbial urease and provides an optimal strategy and suitable feed additive for regulating nitrogen excretion in ruminants in the future. KEY POINTS: • Epiberberine is the most effective inhibitor of rumen urease from Rhizoma Coptidis. • Urease accessory protein UreG is an effective target for design of urease inhibitor. • Epiberberine may be used as natural feed additive to reducing NH3 release in ruminants.


Assuntos
Berberina , Berberina/análogos & derivados , Animais , Berberina/farmacologia , Urease , Amônia , Cloretos , Rúmen , Inibidores Enzimáticos/farmacologia , Nitrogênio , Ruminantes
4.
MedComm (2020) ; 5(4): e520, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38576455

RESUMO

Ferroptosis has been confirmed to be associated with various diseases, but the relationship between ferroptosis and atherosclerosis (AS) remains unclear. Our research detailly clarified the roles of ferroptosis in three continuous and main pathological stages of AS respectively (injury of endothelial cells [ECs], adhesion of monocytes, and formation of foam cells). We confirmed that oxidized low-density lipoprotein (ox-LDL), the key factor in the pathogenesis of AS, strongly induced ferroptosis in ECs. Inhibition of ferroptosis repressed the adhesion of monocytes to ECs by inhibiting inflammation of ECs. Ferroptosis also participated in the formation of foam cells and lipids by regulating the cholesterol efflux of macrophages. Further research confirmed that ox-LDL repressedthe activity of glutathione peroxidase 4 (GPX4), the classic lipid peroxide scavenger. Treatment of a high-fat diet significantly induced ferroptosis in murine aortas and aortic sinuses, which was accompanied by AS lesions and hyperlipidemia. Treatment with ferroptosis inhibitors significantly reduced ferroptosis, hyperlipidemia, and AS lesion development. In conclusion, our research determined that ox-LDL induced ferroptosis by repressing the activity of GPX4. Antiferroptosis treatment showed promising treatment effects in vivo. Ferroptosis-associated indexes also showed promising diagnostic potential in AS patients.

5.
Chem Sci ; 15(15): 5775-5785, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38638235

RESUMO

Bacterial infections, as the second leading cause of global death, are commonly treated with antibiotics. However, the improper use of antibiotics contributes to the development of bacterial resistance. Therefore, the accurate differentiation between bacterial and non-bacterial inflammations is of utmost importance in the judicious administration of clinical antibiotics and the prevention of bacterial resistance. However, as of now, no fluorescent probes have yet been designed for the relevant assessments. To this end, the present study reports the development of a novel fluorescence probe (CyQ) that exhibits dual-enzyme responsiveness. The designed probe demonstrated excellent sensitivity in detecting NTR and NAD(P)H, which served as critical indicators for bacterial and non-bacterial inflammations. The utilization of CyQ enabled the efficient detection of NTR and NAD(P)H in distinct channels, exhibiting impressive detection limits of 0.26 µg mL-1 for NTR and 5.54 µM for NAD(P)H, respectively. Experimental trials conducted on living cells demonstrated CyQ's ability to differentiate the variations in NTR and NAD(P)H levels between A. baumannii, S. aureus, E. faecium, and P. aeruginosa-infected as well as LPS-stimulated HUVEC cells. Furthermore, in vivo zebrafish experiments demonstrated the efficacy of CyQ in accurately discerning variations in NTR and NAD(P)H levels resulting from bacterial infection or LPS stimulation, thereby facilitating non-invasive detection of both bacterial and non-bacterial inflammations. The outstanding discriminatory ability of CyQ between bacterial and non-bacterial inflammation positions it as a promising clinical diagnostic tool for acute inflammations.

6.
Sci Bull (Beijing) ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38641511

RESUMO

Lung cancer is an exceedingly malignant tumor reported as having the highest morbidity and mortality of any cancer worldwide, thus posing a great threat to global health. Despite the growing demand for precision medicine, current methods for early clinical detection, treatment and prognosis monitoring in lung cancer are hampered by certain bottlenecks. Studies have found that during the formation and development of a tumor, molecular substances carrying tumor-related genetic information can be released into body fluids. Liquid biopsy (LB), a method for detecting these tumor-related markers in body fluids, maybe a way to make progress in these bottlenecks. In recent years, LB technology has undergone rapid advancements. Therefore, this review will provide information on technical updates to LB and its potential clinical applications, evaluate its effectiveness for specific applications, discuss the existing limitations of LB, and present a look forward to possible future clinical applications. Specifically, this paper will introduce technical updates from the prospectives of engineering breakthroughs in the detection of membrane-based LB biomarkers and other improvements in sequencing technology. Additionally, it will summarize the latest applications of liquid biopsy for the early detection, diagnosis, treatment, and prognosis of lung cancer. We will present the interconnectedness of clinical and laboratory issues and the interplay of technology and application in LB today.

7.
ACS Sens ; 2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38644577

RESUMO

A core-shell nanostructure of gold nanoparticles@covalent organic framework (COF) loaded with palladium nanoparticles (AuNPs@COF-PdNPs) was designed for the rapid monitoring of catalytic reactions with surface-enhanced Raman spectroscopy (SERS). The nanostructure was prepared by coating the COF layer on AuNPs and then in situ synthesizing PdNPs within the COF shell. With the respective SERS activity and catalytic performance of the AuNP core and COF-PdNPs shell, the nanostructure can be directly used in the SERS study of the catalytic reaction processes. It was shown that the confinement effect of COF resulted in the high dispersity of PdNPs and outstanding catalytic activity of AuNPs@COF-PdNPs, thus improving the reaction rate constant of the AuNPs@COF-PdNPs-catalyzed hydrogenation reduction by 10 times higher than that obtained with Au/Pd NPs. In addition, the COF layer can serve as a protective shell to make AuNPs@COF-PdNPs possess excellent reusability. Moreover, the loading of PdNPs within the COF layer was found to be in favor of avoiding intermediate products to achieve a high total conversion rate. AuNPs@COF-PdNPs also showed great catalytic activities toward the Suzuki-Miyaura coupling reaction. Taken together, the proposed core-shell nanostructure has great potential in monitoring and exploring catalytic processes and interfacial reactions.

8.
J Comp Physiol B ; 2024 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-38522042

RESUMO

Disuse-induced muscular atrophy is frequently accompanied by iron overload. Hibernating animals are a natural animal model for resistance to disuse muscle atrophy. In this paper, we explored changes in skeletal muscle iron content of Daurian ground squirrels (Spermophilus dauricus) during different periods of hibernation as well as the regulatory mechanisms involved. The results revealed that compared with the summer active group (SA), iron content in the soleus muscle (SOL) decreased (- 65%) in the torpor group (TOR), but returned to normal levels in the inter-bout arousal (IBA); splenic iron content increased in the TOR group (vs. SA, + 67%), decreased in the IBA group (vs. TOR, - 37%). Expression of serum hepcidin decreased in the TOR group (vs. SA, - 22%) and returned to normal levels in the IBA groups; serum ferritin increased in the TOR group (vs. SA, + 31%), then recovered in the IBA groups. Soleus muscle transferrin receptor 1 (TfR1) expression increased in the TOR group (vs. SA, + 83%), decreased in the IBA group (vs. TOR, - 30%); ferroportin 1 increased in the IBA group (vs. SA, + 55%); ferritin increased in the IBA group (vs. SA, + 42%). No significant differences in extensor digitorum longus in iron content or iron metabolism-related protein expression were observed among the groups. Significantly, all increased or decreased indicators in this study returned to normal levels after the post-hibernation group, showing remarkable plasticity. In summary, avoiding iron overload may be a potential mechanism for hibernating Daurian ground squirrels to avoid disuse induced muscular atrophy. In addition, the different skeletal muscle types exhibited unique strategies for regulating iron homeostasis.

9.
Artif Intell Med ; 150: 102827, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38553166

RESUMO

Due to the surging of cost, artificial intelligence-assisted de novo drug design has supplanted conventional methods and become an emerging option for drug discovery. Although there have arisen many successful examples of applying generative models to the molecular field, these methods struggle to deal with conditional generation that meet chemists' practical requirements which ask for a controllable process to generate new molecules or optimize basic molecules with appointed conditions. To address this problem, a Recurrent Molecular-Generative Pretrained Transformer model is proposed, supplemented by LocalRNN and Residual Attention Layer Transformer, referred to as RM-GPT. RM-GPT rebuilds GPT model's architecture by incorporating LocalRNN and Residual Attention Layer Transformer so that it is able to extract local information and build connectivity between attention blocks. The incorporation of Transformer in these two modules enables leveraging the parallel computing advantages of multi-head attention mechanisms while extracting local structural information effectively. Through exploring and learning in a large chemical space, RM-GPT absorbs the ability to generate drug-like molecules with conditions in demand, such as desired properties and scaffolds, precisely and stably. RM-GPT achieved better results than SOTA methods on conditional generation.


Assuntos
Inteligência Artificial , Aprendizagem
10.
Eur J Surg Oncol ; 50(4): 108242, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38460248

RESUMO

BACKGROUND: Preoperative neoadjuvant chemoradiotherapy (nCRT) followed by total mesorectal excision (TME) is a common approach for treating patients with locally advanced rectal cancer. Nevertheless, the mutational profile and its prognostic impact in surgically resected tumor specimens after nCRT remains to be clarified. METHODS: The comprehensive analysis of mutational landscape was retrospectively conducted by target regions sequencing approach that covered 150 tumor-related genes. Univariate and multivariate logistic regression and Cox regression was used to examine the association of mutation status in genes and pathways with pathological response and prognosis. Data from Memorial Sloan Kettering Cancer Center (MSK) cohort was used for comparison with our results. RESULTS: The top five commonly mutated genes in resected rectal tumor tissue samples following nCRT were TP53 (42%), APC (31%), KRAS (27%), PIK3CA (14%) and FBXW7 (11%). Mutations in the WNT pathway, which was mainly represented by APC mutation, were found to be significantly associated with tumor regression grade (TRG) 3. In our cohort, co-mutations in the receptor tyrosine kinase (RTK)/RAS and WNT pathways were found to be independently associated with reduced risk of recurrent and significantly associated with longer disease-free survival (DFS). In both our cohort and the MSK cohort, co-mutations in the TGF-ß and TP53 pathways were significantly associated with worse DFS. CONCLUSIONS: Resected rectal tumor samples from patients without complete pathological response can be appropriately used to detect mutations. Co-mutations in the TGF-ß and TP53 pathways may provide more prognostic information beyond commonly used clinical factors.


Assuntos
Terapia Neoadjuvante , Neoplasias Retais , Humanos , Prognóstico , Estudos Retrospectivos , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Quimiorradioterapia , Neoplasias Retais/genética , Neoplasias Retais/terapia , Mutação , Estadiamento de Neoplasias , Resultado do Tratamento , Proteína Supressora de Tumor p53/genética
11.
Int J Oral Sci ; 16(1): 26, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38548747

RESUMO

SEMA7A belongs to the Semaphorin family and is involved in the oncogenesis and tumor progression. Aberrant glycosylation has been intricately linked with immune escape and tumor growth. SEMA7A is a highly glycosylated protein with five glycosylated sites. The underlying mechanisms of SEMA7A glycosylation and its contribution to immunosuppression and tumorigenesis are unclear. Here, we identify overexpression and aberrant N-glycosylation of SEMA7A in head and neck squamous cell carcinoma, and elucidate fucosyltransferase FUT8 catalyzes aberrant core fucosylation in SEMA7A at N-linked oligosaccharides (Asn 105, 157, 258, 330, and 602) via a direct protein‒protein interaction. A glycosylated statue of SEMA7A is necessary for its intra-cellular trafficking from the cytoplasm to the cytomembrane. Cytokine EGF triggers SEMA7A N-glycosylation through increasing the binding affinity of SEMA7A toward FUT8, whereas TGF-ß1 promotes abnormal glycosylation of SEMA7A via induction of epithelial-mesenchymal transition. Aberrant N-glycosylation of SEMA7A leads to the differentiation of CD8+ T cells along a trajectory toward an exhausted state, thus shaping an immunosuppressive microenvironment and being resistant immunogenic cell death. Deglycosylation of SEMA7A significantly improves the clinical outcome of EGFR-targeted and anti-PD-L1-based immunotherapy. Finally, we also define RBM4, a splice regulator, as a downstream effector of glycosylated SEMA7A and a pivotal mediator of PD-L1 alternative splicing. These findings suggest that targeting FUT8-SEMA7A axis might be a promising strategy for improving antitumor responses in head and neck squamous cell carcinoma patients.


Assuntos
Neoplasias de Cabeça e Pescoço , Semaforinas , Humanos , Glicosilação , Carcinoma de Células Escamosas de Cabeça e Pescoço , Linfócitos T CD8-Positivos/metabolismo , Fucosiltransferases/metabolismo , Microambiente Tumoral , Proteínas de Ligação a RNA/metabolismo , Antígenos CD/metabolismo , Semaforinas/metabolismo , Proteínas Ligadas por GPI/metabolismo
12.
Transl Vis Sci Technol ; 13(3): 19, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38517447

RESUMO

Purpose: The regulation of mitophagy by Sirt3 has rarely been studied in ocular diseases. In the present study, we determined the effects of Sirt3 on AMPK/mTOR/ULK1 signaling pathway-mediated mitophagy in retinal pigment epithelial (RPE) cells in a high glucose environment. Methods: The mRNA expression levels of Sirt3, AMPK, mTOR, ULK1, and LC3B in RPE cells under varying glucose conditions were measured by real-time polymerase chain reaction (RT-PCR). The expressions of Sirt3, mitophagy protein, and AMPK/mTOR/ULK1 signaling pathway-related proteins were detected by Western blotting. Lentivirus (LV) transfection mediated the stable overexpression of Sirt3 in cell lines. The experimental groups were NG (5.5 mM glucose), hypertonic, HG (30 mM glucose), HG + LV-GFP, and HG + LV-Sirt3. Western blotting was performed to detect the expressions of mitophagy proteins and AMPK/mTOR/ULK1-related proteins in a high glucose environment during the overexpression of Sirt3. Reactive oxygen species (ROS) production in a high glucose environment was measured by DCFH-DA staining. Mitophagy was detected by labeling mitochondria and lysosomes with MitoTracker and LysoTracker probes, respectively. Apoptosis was detected by flow cytometry. Results: Sirt3 expression was reduced in the high glucose group, inhibiting the AMPK/mTOR/ULK1 pathway, with diminished mitophagy and increased intracellular ROS production. The overexpression of Sirt3, increased expression of p-AMPK/AMPK and p-ULK1/ULK1, and decreased expression of p-mTOR/mTOR inhibited cell apoptosis and enhanced mitophagy. Conclusions: Sirt3 protected RPE cells from high glucose-induced injury by activating the AMPK/mTOR/ULK1 signaling pathway. Translational Relevance: By identifying new targets of action, we aimed to establish effective therapeutic targets for diabetic retinopathy treatment.


Assuntos
Retinopatia Diabética , Mitofagia , Sirtuína 3 , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Retinopatia Diabética/metabolismo , Células Epiteliais/metabolismo , Glucose/toxicidade , Mitofagia/genética , Espécies Reativas de Oxigênio/metabolismo , Retina/metabolismo , Retina/patologia , Sirtuína 3/genética , Sirtuína 3/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Humanos
14.
Gen Hosp Psychiatry ; 88: 51-60, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38508076

RESUMO

BACKGROUND: Depressive disorder is a severe global public health problem. It is crucial to evaluate the global incidence trends of depressive disorder. METHODS: The incidence data were drawn from the Global Burden of Disease Study (GBD) 2019. Estimates were presented by global and sociodemographic index (SDI) quintiles, and the age-period-cohort (APC) model was used to estimate the incidence trends. RESULTS: APC analysis indicated a decline in depressive disorder incidence globally (net drift = -0.24%, 95%CI: -0.29, -0.18), except for an increase in SDI regions (net drift = 0.07, 95%CI:0, 0.14). In high SDI regions, depressive disorder incidence increased among the younger and declined among the elder population, whereas the opposite trend was observed in middle and low-middle SDI regions. The depressive disorder incidence increased significantly among people aged 15 to 24 years after adjusting for age effects, decreased since 2000 after adjusting for period effects and increased rapidly in the birth cohort after 1990 in high SDI by adjusting for cohort effects. CONCLUSION: Globally, there was a declining trend of depressive disorder incidence in 1990-2019. Specifically, the incidence was declining globally in younger populations, while increasing in older populations. However, this trend differed depending on the SDI of the region.


Assuntos
Transtorno Depressivo , Carga Global da Doença , Humanos , Idoso , Incidência , Fatores Socioeconômicos , Estudos de Coortes , Transtorno Depressivo/epidemiologia , Anos de Vida Ajustados por Qualidade de Vida
15.
Food Chem ; 447: 138989, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38492297

RESUMO

Limonin is an intensely bitter and highly oxidized tetracyclic triterpenoid secondary metabolite, which is abundant in the Rutaceae and Meliaceae, especially in Citrus. In order to detect limonin content in complex substrates such as citrus and traditional Chinese medicine, monoclonal antibodies specifically recognizing limonin were prepared and an indirect competitive enzyme-linked immunosorbent assay (icELISA) was established. The median inhibition concentration (IC50) was 5.40 ng/mL and the linear range was 1.25-23.84 ng/mL. The average recoveries from citrus peel and pulp samples were 95.9%-118.8% and 77.5%-113.1%, respectively. Moreover, the contents of limonin in 6 citrus samples and 4 herbal samples were analyzed by icELISA and UPLC-MS, and the results of the two methods were consistent. This validation is sufficient to demonstrate that the developed immunoassay is applicable for the detection of limonin in citrus and herbal samples and has the advantage of high efficiency, sensitivity, and convenience.


Assuntos
Citrus , Limoninas , Anticorpos Monoclonais , Limoninas/análise , Ensaio de Imunoadsorção Enzimática/métodos , Citrus/química , Cromatografia Líquida , Espectrometria de Massas em Tandem
16.
Nat Commun ; 15(1): 1659, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38395953

RESUMO

Selenium is an essential multifunctional trace element in diverse organisms. The only Se-glycosyltransferase identified that catalyzes the incorporation of selenium in selenoneine biosynthesis is SenB from Variovorax paradoxus. Although the biochemical function of SenB has been investigated, its substrate specificity, structure, and catalytic mechanism have not been elucidated. Here, we reveal that SenB exhibits sugar donor promiscuity and can utilize six UDP-sugars to generate selenosugars. We report crystal structures of SenB complexed with different UDP-sugars. The key elements N20/T23/E231 contribute to the sugar donor selectivity of SenB. A proposed catalytic mechanism is tested by structure-guided mutagenesis, revealing that SenB yields selenosugars by forming C-Se glycosidic bonds via spontaneous deprotonation and disrupting Se-P bonds by nucleophilic water attack, which is initiated by the critical residue K158. Furthermore, we functionally and structurally characterize two other Se-glycosyltransferases, CbSenB from Comamonadaceae bacterium and RsSenB from Ramlibacter sp., which also exhibit sugar donor promiscuity.


Assuntos
Glicosiltransferases , Histidina/análogos & derivados , Compostos Organosselênicos , Selênio , Glicosiltransferases/metabolismo , Açúcares de Uridina Difosfato , Carboidratos , Açúcares , Especificidade por Substrato
17.
Cancer Gene Ther ; 31(4): 627-640, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38302728

RESUMO

Neurofibromatosis type 1 associated plexiform neurofibroma (pNF) is characterized by abundant fibroblasts and dense collagen, yet the intricate interactions between tumor-origin cells (Schwann cells) and neurofibroma-associated fibroblasts (NFAFs) remain elusive. Employing single-cell RNA sequencing on human pNF samples, we generated a comprehensive transcriptomics dataset and conducted cell-cell communication analysis to unravel the molecular dynamics between Schwann cells and NFAFs. Our focus centered on the pleiotrophin (PTN)/nucleolin (NCL) axis as a pivotal ligand-receptor pair orchestrating this interaction. Validation of PTN involvement was affirmed through coculture models and recombinant protein experiments. Functional and mechanistic investigations, employing assays such as CCK8, EdU, Western Blot, ELISA, Hydroxyproline Assay, and Human phospho-kinase array, provided critical insights. We employed siRNA or inhibitors to intercept the PTN/NCL/proline-rich Akt substrate of 40 kDa (PRAS40) axis, validating the associated molecular mechanism. Our analysis highlighted a subset of Schwann cells closely linked to collagen deposition, underscoring their significance in pNF development. The PTN/NCL axis emerged as a key mediator of the Schwann cell-NFAF interaction. Furthermore, our study demonstrated that elevated PTN levels enhanced NFAF proliferation and collagen synthesis, either independently or synergistically with TGF-ß1 in vitro. Activation of the downstream molecule PRAS40 was noted in NFAFs upon PTN treatment. Crucially, by targeting NCL and PRAS40, we successfully reversed collagen synthesis within NFAFs. In conclusion, our findings unveil the pivotal role of the PTN/NCL/PRAS40 axis in driving pNF development by promoting NFAFs proliferation and function. Targeting this pathway emerges as a potential therapeutic strategy for pNF. This study contributes novel insights into the molecular mechanisms governing pNF pathogenesis.


Assuntos
Proteínas de Transporte , Neurofibroma Plexiforme , Humanos , Neurofibroma Plexiforme/genética , Neurofibroma Plexiforme/tratamento farmacológico , Neurofibroma Plexiforme/patologia , Citocinas/metabolismo , Colágeno/metabolismo , Colágeno/uso terapêutico , Proliferação de Células , Células de Schwann/metabolismo , Células de Schwann/patologia , Fibroblastos/metabolismo
18.
Lupus ; 33(4): 387-396, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38305218

RESUMO

BACKGROUND: Systemic lupus erythematosus (SLE) is a chronic, multisystem autoimmune disorder. When SLE occurs in individuals under the age of 18, it is referred to as childhood-onset SLE (cSLE). Currently, there is a dearth of bibliometric research pertaining to cSLE. METHOD: Relevant studies in the field of cSLE from 2000 to 2022 were screened from the Web of Science Core Collection (WoSCC). CiteSpace and VOSviewer software were used to visualize the annual publications, countries, institutions, authors, journals, keywords, and references, after which the authors conducted the scientific analysis. RESULTS: A total of 2857 articles were included in this study, and the number of articles published in the past 20 years showed an overall upwards trend. The most prolific countries are the United States, China, and Brazil; however, the United States, Canada, and the United Kingdom are clearly superior in terms of literary influence, and there is more cooperation between them and their institutions. LUPUS (n = 389) contributed the most to the variance. Brunner, HI's contribution in the field of cSLE is outstanding. The words related to 'lupus nephritis' and 'antibodies' are important words reflected in the keyword network diagram. The keywords included 'evidence-based recommendation', 'validation', 'diagnosis' and 'adult' from 2019, and 'continuous bursts' to the present. CONCLUSION: This study examined the research status of cSLE patients, discussed and analysed the research hotspots and trends in this field, and provided a reference for further research in this field to promote the development of cSLE research.


Assuntos
Lúpus Eritematoso Sistêmico , Nefrite Lúpica , Humanos , Lúpus Eritematoso Sistêmico/diagnóstico , Anticorpos , Bibliometria , Brasil
19.
Int J Biol Macromol ; 262(Pt 2): 129983, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38354935

RESUMO

Alternaria is a plant pathogen that spreads globally and is prone to causing citrus brown spot disease and metabolizing mycotoxins, thus seriously hindering the development of this economic crop industry. Herein, a "label-free" and "turn on" visual fluorescent assay for citrus Alternaria based on CRISPR-Cas12a and rolling circle amplification (RCA) was described. Using ssDNA complementary to RCA primer as a trans-cleavage substrate for CRISPR-Cas12a, the two systems of CRISPR-Cas12a and RCA-amplified G-quadruplex were skillfully integrated. By using a portable light source for excitation, the positive sample produced obvious red fluorescence, while the negative sample remained almost colorless, making them easy to differentiate with the naked eye. In addition, the specificity was demonstrated by distinguishing Alternaria from other citrus disease related pathogens. Moreover, the practicality was verified by analyzing cultured Alternaria and Alternaria in actual citrus leaf and fruit samples. Therefore, this method may contribute to the on-site diagnosis of Alternaria.


Assuntos
Alternaria , Citrus , Alternaria/genética , Sistemas CRISPR-Cas/genética , Técnicas de Amplificação de Ácido Nucleico/métodos , Corantes Fluorescentes
20.
Cell Biosci ; 14(1): 16, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38303024

RESUMO

Macrophages and tumour stroma cells account for the main cellular components in the tumour microenvironment (TME). Current advancements in single-cell analysis have revolutionized our understanding of macrophage diversity and macrophage-stroma interactions. Accordingly, this review describes new insight into tumour-associated macrophage (TAM) heterogeneity in terms of tumour type, phenotype, metabolism, and spatial distribution and presents the association between these factors and TAM functional states. Meanwhile, we focus on the immunomodulatory feature of TAMs and highlight the tumour-promoting effect of macrophage-tumour stroma interactions in the immunosuppressive TME. Finally, we summarize recent studies investigating macrophage-targeted therapy and discuss their therapeutic potential in improving immunotherapy by alleviating immunosuppression.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...